Therapeutic developments for tuberculosis and nontuberculous mycobacterial lung disease - Nature.com

Abstract

Tuberculosis (TB) drug discovery and development has undergone nothing short of a revolution over the past 20 years. Successful public–private partnerships and sustained funding have delivered a much-improved understanding of mycobacterial disease biology and pharmacology and a healthy pipeline that can tolerate inevitable attrition. Preclinical and clinical development has evolved from decade-old concepts to adaptive designs that permit rapid evaluation of regimens that might greatly shorten treatment duration over the next decade. But the past 20 years also saw the rise of a fatal and difficult-to-cure lung disease caused by nontuberculous mycobacteria (NTM), for which the drug development pipeline is nearly empty. Here, we discuss the similarities and differences between TB and NTM lung diseases, compare the preclinical and clinical advances, and identify major knowledge gaps and areas of cross-fertilization. We argue that applying paradigms and networks that have proved successful for TB, from basic research to clinical trials, will help to populate the pipeline and accelerate curative regimen development for NTM disease.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Buy now

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline and evolution of tuberculosis drug and regimen development concepts.
Fig. 2: Selected anti-mycobacterial drug candidates and their mechanism of action.
Fig. 3: Susceptibility ranges of TB drugs repurposed for the treatment of pulmonary disease caused by nontuberculous mycobacteria, relative to clinical breakpoints.
Fig. 4: Emerging adaptive trial designs for TB.

Similar content being viewed by others

Anti-tuberculosis treatment strategies and drug development: challenges and priorities

Moving tuberculosis vaccines from theory to practice

A multi-scale pipeline linking drug transcriptomics with pharmacokinetics predicts in vivo interactions of tuberculosis drugs

References

  1. WHO. Global Tuberculosis Report https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022 (Geneva, 2022).

  2. Pai, M., Kasaeva, T. & Swaminathan, S. Covid-19's devastating effect on tuberculosis care – a path to recovery. N. Engl. J. Med. 386, 1490–1493 (2022).

    Article  CAS  PubMed  Google Scholar 

  3. Marais, B. J., Hesseling, A. C. & Cotton, M. F. Poverty and tuberculosis: is it truly a simple inverse linear correlation? Eur. Respir. J. 33, 943–944 (2009).

    Article  CAS  PubMed  Google Scholar 

  4. Dartois, V. A. & Rubin, E. J. Anti-tuberculosis treatment strategies and drug development: challenges and priorities. Nat. Rev. Microbiol. 20, 685–701 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. WHO. Global Tuberculosis Report https://www.who.int/publications/i/item/9789240037021 (Geneva, 2021).

  6. WHO. WHO Consolidated Guidelines on Tuberculosis. Module 4: Drug-resistant Tuberculosis Treatment https://www.who.int/publications/i/item/9789240007048 (Geneva, 2020).

  7. Motta, I. et al. Recent advances in the treatment of tuberculosis. Clin. Microbiol. Infect. https://doi.org/10.1016/j.cmi.2023.07.013 (2023).

    Article  PubMed  Google Scholar 

  8. Evangelopoulos, D. & McHugh, T. D. Improving the tuberculosis drug development pipeline. Chem. Biol. Drug Des. 86, 951–960 (2015).

    Article  CAS  PubMed  Google Scholar 

  9. Cowman, S., van Ingen, J., Griffith, D. E. & Loebinger, M. R. Non-tuberculous mycobacterial pulmonary disease. Eur. Respir. J. 54, 1900250 (2019).

    Article  CAS  PubMed  Google Scholar 

  10. Winthrop, K. L. et al. Incidence and prevalence of nontuberculous mycobacterial lung disease in a large U.S. managed care health plan, 2008–2015. Ann. Am. Thorac. Soc. 17, 178–185 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Prevots, D. R. & Marras, T. K. Epidemiology of human pulmonary infection with nontuberculous mycobacteria: a review. Clin. Chest Med. 36, 13–34 (2015).

    Article  PubMed  Google Scholar 

  12. Raju, R. M., Raju, S. M., Zhao, Y. & Rubin, E. J. Leveraging advances in tuberculosis diagnosis and treatment to address nontuberculous mycobacterial disease. Emerg. Infect. Dis. 22, 365–369 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sawka, A. & Burke, A. Medications and monitoring in treatment of nontuberculous mycobacteria lung disease. Clin. Chest Med. 44, 815–828 (2023).

    Article  PubMed  Google Scholar 

  14. Daley, C. L. et al. Treatment of nontuberculous mycobacterial pulmonary disease: an official ATS/ERS/ESCMID/IDSA clinical practice guideline. Clin. Infect. Dis. 71, 905–913 (2020). A comprehensive review by US and European physicians of evidence-based recommendations for the treatment of NTM-PD.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Egorova, A., Jackson, M., Gavrilyuk, V. & Makarov, V. Pipeline of anti-Mycobacterium abscessus small molecules: repurposable drugs and promising novel chemical entities. Med. Res. Rev. 41, 2350–2387 (2021). A comprehensive review of the clinical and preclinical pipeline for MAB-PD, by mechanism of action and target.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Johansen, M. D., Herrmann, J. L. & Kremer, L. Non-tuberculous mycobacteria and the rise of Mycobacterium abscessus. Nat. Rev. Microbiol. 18, 392–407 (2020). A review covering the biology, virulence factors, host interactions and drug resistance mechanisms of M. abscessus, one of the most antibiotic-resistant mycobacteria.

    Article  CAS  PubMed  Google Scholar 

  17. Griffith, D. E. & Aksamit, T. R. Understanding nontuberculous mycobacterial lung disease: it's been a long time coming. F1000Res 5, 2797 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Young, C., Walzl, G. & Du Plessis, N. Therapeutic host-directed strategies to improve outcome in tuberculosis. Mucosal Immunol. 13, 190–204 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Tiwari, D. & Martineau, A. R. Inflammation-mediated tissue damage in pulmonary tuberculosis and host-directed therapeutic strategies. Semin. Immunol. 65, 101672 (2022).

    Article  PubMed  Google Scholar 

  20. Lee, A., Xie, Y. L., Barry, C. E. & Chen, R. Y. Current and future treatments for tuberculosis. BMJ 368, m216 (2020).

    Article  PubMed  Google Scholar 

  21. Anidi, I. U. & Olivier, K. N. Host-directed therapy in nontuberculous mycobacterial pulmonary disease: preclinical and clinical data review. Clin. Chest Med. 44, 839–845 (2023).

    Article  PubMed  Google Scholar 

  22. Hatfull, G. F. Phage therapy for nontuberculous mycobacteria: challenges and opportunities. Pulm. Ther. 9, 91–107 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Sterling, T. R. et al. Guidelines for the treatment of latent tuberculosis infection: recommendations from the National Tuberculosis Controllers Association and CDC, 2020. MMWR Recomm. Rep. 69, 1–11 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kumar, K. & Loebinger, M. R. Nontuberculous mycobacterial pulmonary disease: clinical epidemiologic features, risk factors, and diagnosis: the nontuberculous mycobacterial series. Chest 161, 637–646 (2022).

    Article  PubMed  Google Scholar 

  25. Sharma, S. K., Mohan, A. & Kohli, M. Extrapulmonary tuberculosis. Expert. Rev. Respir. Med. 15, 931–948 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Shih, D. C. et al. Extrapulmonary nontuberculous mycobacterial disease surveillance – Oregon, 2014–2016. MMWR Morb. Mortal. Wkly Rep. 67, 854–857 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wilkinson, R. J. et al. Tuberculous meningitis. Nat. Rev. Neurol. 13, 581–598 (2017).

    Article  PubMed  Google Scholar 

  28. Ganchua, S. K. C., White, A. G., Klein, E. C. & Flynn, J. L. Lymph nodes — the neglected battlefield in tuberculosis. PLoS Pathog. 16, e1008632 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lin, P. L. et al. Sterilization of granulomas is common in active and latent tuberculosis despite within-host variability in bacterial killing. Nat. Med. 20, 75–79 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Xie, Y. L. et al. Fourteen-day PET/CT imaging to monitor drug combination activity in treated individuals with tuberculosis. Sci. Transl. Med. 13, eabd7618 (2021).

    Article  CAS  PubMed  Google Scholar 

  31. Zhu, J., Liu, Y. J. & Fortune, S. M. Spatiotemporal perspectives on tuberculosis chemotherapy. Curr. Opin. Microbiol. 72, 102266 (2023).

    Article  CAS  PubMed  Google Scholar 

  32. Dorman, S. E. et al. Four-month rifapentine regimens with or without moxifloxacin for tuberculosis. N. Engl. J. Med. 384, 1705–1718 (2021). The first successful trial in more than four decades of treatment shortening in patients with DS-TB, reducing therapy duration from 6 to 4 months.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Conradie, F. et al. Treatment of highly drug-resistant pulmonary tuberculosis. N. Engl. J. Med. 382, 893–902 (2020). A landmark clinical trial that successfully reduced treatment duration from 18–24 months to 6 months for patients with drug-resistant TB, showing the power of novel mechanisms of action.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dahl, V. N. et al. Global trends of pulmonary infections with nontuberculous mycobacteria: a systematic review. Int. J. Infect. Dis. 125, 120–131 (2022).

    Article  PubMed  Google Scholar 

  35. Honda, J. R., Bernhard, J. N. & Chan, E. D. Natural disasters and nontuberculous mycobacteria: a recipe for increased disease? Chest 147, 304–308 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Mirsaeidi, M. & Sadikot, R. T. Gender susceptibility to mycobacterial infections in patients with non-CF bronchiectasis. Int. J. Mycobacteriol. 4, 92–96 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Andrejak, C. et al. Chronic respiratory disease, inhaled corticosteroids and risk of non-tuberculous mycobacteriosis. Thorax 68, 256–262 (2013).

    Article  PubMed  Google Scholar 

  38. Chan, E. D. & Iseman, M. D. Underlying host risk factors for nontuberculous mycobacterial lung disease. Semin. Respir. Crit. Care Med. 34, 110–123 (2013).

    Article  PubMed  Google Scholar 

  39. Abidin, N. Z. et al. Trends in nontuberculous mycobacteria infection in children and young people with cystic fibrosis. J. Cyst. Fibros. 20, 737–741 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Brugha, R. & Spencer, H. Mycobacterium abscessus in cystic fibrosis. Science 372, 465–466 (2021).

    Article  ADS  CAS  PubMed  Google Scholar 

  41. Honda, J. R., Virdi, R. & Chan, E. D. Global environmental nontuberculous mycobacteria and their contemporaneous man-made and natural niches. Front. Microbiol. 9, 2029 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kim, D. H. et al. In vitro activity and clinical outcomes of clofazimine for nontuberculous mycobacteria pulmonary disease. J. Clin. Med. 10, 4581 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pfaeffle, H. O. I. et al. Clofazimine for treatment of multidrug-resistant non-tuberculous mycobacteria. Pulm. Pharmacol. Ther. 70, 102058 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Holt, M. R. & Baird, T. Treatment approaches to Mycobacterium abscessus pulmonary disease. Clin. Chest Med....

Comments

Popular posts from this blog