The risk of contact between visitors and Borrelia burgdorferi-infected ticks is associated with fine-scale landscape ... - BMC Public Health

  • Hausermann H, Tschakert P, Smithwick EA, Ferring D, Amankwah R, Klutse E, et al. Contours of risk: spatializing human behaviors to understand disease dynamics in changing landscapes. EcoHealth. 2012;9(3):251–5.

    Article  PubMed  Google Scholar 

  • Hosseini PR, Mills JN, Prieur-Richard AH, Ezenwa VO, Bailly X, Rizzoli A, et al. Does the impact of biodiversity differ between emerging and endemic pathogens? The need to separate the concepts of hazard and risk. Philos Trans R Soc Lond B Biol Sci. 2017;372(1722):20160129.

    Article  PubMed  PubMed Central  Google Scholar 

  • Diuk-Wasser MA, VanAcker MC, Fernandez MP. Impact of land use changes and habitat fragmentation on the eco-epidemiology of tick-borne diseases. Reisen W, editor. J Med Entomol. 2021;58(4):1546–64.

    Article  PubMed  Google Scholar 

  • Ehrmann S, Liira J, Gärtner S, Hansen K, Brunet J, Cousins SA, et al. Environmental drivers of Ixodes ricinus abundance in forest fragments of rural European landscapes. BMC Ecology. 2017;17:1–4.

    Article  Google Scholar 

  • Kilpatrick AM, Dobson ADM, Levi T, Salkeld DJ, Swei A, Ginsberg HS, et al. Lyme disease ecology in a changing world: consensus, uncertainty and critical gaps for improving control. Phil Trans R Soc B. 2017;372(1722):20160117–31.

    Article  PubMed  PubMed Central  Google Scholar 

  • Aenishaenslin C, Charland K, Bowser N, Perez-Trejo E, Baron G, Milord F, et al. Behavioral risk factors associated with reported tick exposure in a Lyme disease high incidence region in Canada. BMC Public Health. 2022;22(1):807.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bron GM, Fernandez MD, Larson SR, Maus A, Gustafson D, Tsao JI, et al. Context matters: contrasting behavioral and residential risk factors for Lyme disease between high-incidence states in the Northeastern and Midwestern United States. Ticks Tick Borne Dis. 2020;11(6):101515.

    Article  PubMed  Google Scholar 

  • Garcia-Marti I, Zurita-Milla R, Swart A, van den Wijngaard KC, van Vliet AJ, Bennema S, et al. Identifying environmental and human factors associated with tick bites using volunteered reports and frequent pattern mining. Trans GIS. 2017;21(2):277–99.

    Article  Google Scholar 

  • Clow KM, Leighton PA, Ogden NH, Lindsay LR, Michel P, Pearl DL, et al. Northward range expansion of Ixodes scapularis evident over a short timescale in Ontario, Canada. PloS one. 2017;12(12):e0189393.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dantas-Torres F. Climate change, biodiversity, ticks and tick-borne diseases: the butterfly effect. Int J Parasitol Parasites Wildl. 2015;4(3):452–61.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gasmi S, Ogden NH, Ripoche M, Leighton PA, Lindsay LR, Nelder MP, et al. Detection of municipalities at-risk of Lyme disease using passive surveillance of Ixodes scapularis as an early signal: a province-specific indicator in Canada. PLoS ONE. 2019;14(2):e0212637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sonenshine DE. Range expansion of tick disease vectors in north america: implications for spread of tick-borne disease. Int J Environ Res Public Health. 2018;15(3):478.

    Article  PubMed  PubMed Central  Google Scholar 

  • Braks M a. H, Mulder A, Swart A, Wint W. Grasping risk mapping. Vol. 4. Wageningen Academic Publishers; 2016. Available from: https://ora.ox.ac.uk/objects/uuid:9a61519c-8609-41a1-9823-3e4cd2820a48. Cited 2022 Nov 22.

  • Brooks N. Vulnerability, risk and adaptation: a conceptual framework. Tyndall Centre for Climate Change Research Working Paper. 2003;3(38):1–16.

    Google Scholar 

  • Vanwambeke SO, Schimit PHT. Tick bite risk resulting from spatially heterogeneous hazard, exposure and coping capacity. Ecol Complex. 2021;1(48):100967.

    Article  Google Scholar 

  • McClure M, Diuk-Wasser M. Reconciling the entomological hazard and disease risk in the Lyme disease system. Int J Environ Res Public Health. 2018;15(5):1048–62.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kilpatrick AM, Randolph SE. Drivers, dynamics, and control of emerging vector-borne zoonotic diseases. Lancet. 2012Dec;380(9857):1946–55.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ogden NH, Lindsay LR. Effects of climate and climate change on vectors and vector-borne diseases: ticks are different. Trends Parasitol. 2016;32(8):646–56.

    Article  PubMed  Google Scholar 

  • Zeimes CB, Olsson GE, Hjertqvist M, Vanwambeke SO. Shaping zoonosis risk: landscape ecology vs. landscape attractiveness for people, the case of tick-borne encephalitis in Sweden. Parasit Vectors. 2014;7(1):370.

    Article  PubMed  PubMed Central  Google Scholar 

  • Aenishaenslin C, Bouchard C, Koffi JK, Ogden NH. Exposure and preventive behaviours toward ticks and Lyme disease in Canada: results from a first national survey. Ticks and tick-borne diseases. 2017;8(1):112–8.

    Article  PubMed  Google Scholar 

  • Bouchard C, Dumas A, Baron G, Bowser N, Leighton PA, Lindsay LR, et al. Integrated human behavior and tick risk maps to prioritize Lyme disease interventions using a "One Health" approach. Ticks Tick Borne Dis. 2022Nov 19;14(2): 102083.

    Article  PubMed  Google Scholar 

  • Wood CL, Lafferty KD. Biodiversity and disease: a synthesis of ecological perspectives on Lyme disease transmission. Trends Ecol Evol. 2013Apr;28(4):239–47.

    Article  PubMed  Google Scholar 

  • Eisen L, Wong D, Shelus V, Eisen RJ. What is the risk for exposure to vector-borne pathogens in United States national parks? J Med Entomol. 2013;50(2):221–30.

    Article  PubMed  Google Scholar 

  • Heylen D, Lasters R, Adriaensen F, Fonville M, Sprong H, Matthysen E. Ticks and tick-borne diseases in the city: role of landscape connectivity and green space characteristics in a metropolitan area. Sci Total Environ. 2019J;20(670):941–9.

    Article  Google Scholar 

  • Soverel NO, Coops NC, White JC, Wulder MA. Characterizing the forest fragmentation of Canada's national parks. Environ Monit Assess. 2010May;164(1–4):481–99.

    Article  CAS  PubMed  Google Scholar 

  • Haddad H, Moulin B, Manirakiza F, Méha C, Godard V, Mermet S. Web mapping and behavior pattern extraction tools to assess lyme disease risk for humans in peri-urban forests. Analyzing and modeling spatial and temporal dynamics of infectious diseases. 2014. p. 371–402.

    Google Scholar 

  • Korpilo S, Virtanen T, Saukkonen T, Lehvävirta S. More than A to B: Understanding and managing visitor spatial behaviour in urban forests using public participation GIS. J Environ Manage. 2018;207:124–33.

    Article  PubMed  Google Scholar 

  • Meijles E, De Bakker M, Groote P, Barske R. Analysing hiker movement patterns using GPS data: Implications for park management. Comput Environ Urban Syst. 2014;47:44–57.

    Article  Google Scholar 

  • Ballantyne M, Gudes O, Pickering CM. Recreational trails are an important cause of fragmentation in endangered urban forests: a case-study from Australia. Landsc Urban Plan. 2014;130:112–24.

    Article  Google Scholar 

  • Ripoche M, Lindsay LR, Ludwig A, Ogden NH, Thivierge K, Leighton PA. Multi-scale clustering of Lyme disease risk at the expanding leading edge of the range of Ixodes scapularis in Canada. Int J Environ Res Public Health. 2018;15(4):603–21.

    Article  PubMed  PubMed Central  Google Scholar 

  • van Marwijk R, Elands BH, Lengkeek J. Experiencing nature: The recognition of the symbolic environment within research and management of visitor flows. Forest Snow and Landscape Research. 2007;81(1–2):59–76.

    Google Scholar 

  • Wilkins EJ, Wood SA, Smith JW. Uses and limitations of social media to inform visitor use management in parks and protected areas: a systematic review. Environ Manage. 2021;67(1):120–32.

    Article  PubMed  Google Scholar 

  • Falco RC, Fish D. Potential for exposure to tick bites in recreational parks in a Lyme disease endemic area. Am J Public Health. 1989;79(1):12–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Markovchick-Nicholls L, Regan HM, Deutschman DH, Widyanata A, Martin B, Noreke L, et al. Relationships between Human Disturbance and Wildlife Land Use in Urban Habitat Fragments. Conserv Biol. 2008;22(1):99–109.

    Article  PubMed  Google Scholar 

  • Clifford CM, Anastos G, Van der Borght-Elbl A. The larval ixodid ticks of the eastern United States (Acarina-Ixodidae). Entomological Society of America. 1961.

  • Durden LA, Keirans JE, et al. Nymphs of the genus Ixodes (Acari: Ixodidae) of the United States: taxonomy, identification key, distribution, hosts, and medical/veterinary importance. Entomological Society of America, Annapolis. 1996.

  • Keirans JE, Clifford CM. The genus Ixodes in the United States: a scanning electron microscope study and key to the adults. J Med Entomol. 1978;15(suppl_2):1–38.

    Article  Google Scholar 

  • Courtney JW, Kostelnik LM, Zeidner NS, Massung RF. Multiplex real-time PCR for detection of Anaplasma phagocytophilum and Borrelia burgdorferi. J Clin Microbiol. 2004Jul;42(7):3164–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokarz R, Tagliafierro T, Cucura DM, Rochlin I, Sameroff S, Lipkin WI. Detection of Anaplasma phagocytophilum, Babesia microti, Borrelia burgdorferi, Borrelia miyamotoi, and Powassan virus in ticks by a multiplex real-time reverse transcription-PCR assay. MSphere. 2017;2(2):e00151–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • SÉPAQ. Fréquentation en jours-visites au parc national du Mont-Saint-Bruno. 2020.

  • Song Y, Wang X, Wright G, Thatcher D, Wu P, Felix P. Traffic Volume Prediction With Segment-Based Regression Kriging and its Implementation in Assessing the Impact of Heavy Vehicles. IEEE Trans Intell Transp Syst. 2019Jan;20(1):232–43.

    Article  Google Scholar 

  • SK Song Y. Segment-Based Ordinary Kriging and segment-Based Regression Kriging for Spatial Prediction. R package version 11. 2018.

    Google Scholar 

  • Hiemstra PH, Pebesma EJ, Twenhöfel CJ, Heuvelink GBM. Real-time automatic interpolation of ambient gamma dose rates from the Dutch Radioactivity Monitoring Network. Comput Geosci. 2008;35(8):1711–21.

  • Pebesma E, Bivand RS. Classes and Methods for Spatial Data: the sp Package. R news. 2005;5(2):9–13.

    Google Scholar 

  • Anselin L. Local Indicators of Spatial Association—LISA. Geogr Anal. 1995;27(2):93–115.

    Article  Google Scholar 

  • Government of Quebec. Carte écoforestière originale et résultats d'inventaire - Données Québec. 2021. Available from: https://www.donneesquebec.ca/recherche/fr/dataset/resultats-d-inventaire-et-carte-ecoforestiere. Cited 2022 Feb 11.

  • Government of Quebec. LiDAR - Modèles numériques (terrain, canopée, pente) - Données Québec. 2020. Available from: https://www.donneesquebec.ca/recherche/fr/dataset/produits-derives-de-base-du-lidar. Cited 2022 Feb 11.

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM. Mixed effects models and extensions in ecology with R. New York: Springer; 2009.

  • Bivand RS, Wong DWS. Comparing implementations of global and local indicators of spatial association. TEST. 2018Sep;27(3):716–48.

    Article  Google Scholar 

  • Fletcher R, Fortin M. Spatial ecology and conservation modeling. Springer Nature Switzerland AG; 2018.

  • Wood SN. Generalized additive models: an introduction with R. New York: CRC Press; 2017.

  • Jackson LE, Levine JF, Hilborn E. A comparison of analysis units for associating Lyme disease with forest-edge habitat. Community Ecol. 2006;7(2):189–97.

    Article  Google Scholar 

  • Schägner JP, Brander L, Maes J, Paracchini ML, Hartje V. Mapping recreational visits and values of European National Parks by combining statistical modelling and unit value transfer. J Nat Conserv. 2016;31:71–84.

    Article  Google Scholar 

  • Killilea ME, Swei A, Lane RS, Briggs CJ, Ostfeld RS. Spatial dynamics of lyme disease: a review. EcoHealth. 2008Jun;5(2):167–95.

    Article  PubMed  Google Scholar 

  • Allan BF, Keesing F, Ostfeld RS. Effect of forest fragmentation on Lyme disease risk. Conserv Biol. 2003;17(1):267–72.

    Article  Google Scholar 

  • Brownstein JS, Skelly DK, Holford TR, Fish D. Forest fragmentation predicts local scale heterogeneity of Lyme disease risk. Oecologia. 2005Dec;146(3):469–75.

    Article  PubMed  Google Scholar 

  • Jackson LE, Hilborn ED, Thomas JC. Towards landscape design guidelines for reducing Lyme disease risk. Int J Epidemiol. 2006;35(2):315–22.

    Article  PubMed  Google Scholar 

  • Tran PM, Waller L. Effects of landscape fragmentation and climate on lyme disease incidence in the northeastern United States. EcoHealth. 2013;10(4):394–404.

    Article  PubMed  Google Scholar 

  • Dumas A, Bouchard C, Lindsay LR, Ogden NH, Leighton PA. Fine-scale determinants of the spatiotemporal distribution of Ixodes scapularis in Quebec (Canada). Ticks Tick Borne Dis. 2022;13(1):101833.

    Article  PubMed  Google Scholar 

  • Due C, Fox W, Medlock JM, Pietzsch M, Logan JG. Tick bite prevention and tick removal. BMJ. 2013;9(347):f7123.

    Article  Google Scholar 

  • Stafford KC. Tick management handbook : an integrated guide for homeowners, pest control operators, and public health officials for the prevention of tick-associated disease. 2004. Available from: https://stacks.cdc.gov/view/cdc/11444. Cited 2022 Nov 3.

  • McKay R, Talbot B, Slatculescu A, Stone A, Kulkarni MA. Woodchip borders at the forest ecotone as an environmental control measure to reduce questing tick density along recreational trails in Ottawa, Canada. Ticks Tick Borne Dis. 2020;11(2):101361.

    Article  PubMed  Google Scholar 

  • Pelletier J, Rocheleau JP, Aenishaenslin C, Beaudry F, Dimitri Masson G, Lindsay LR, et al. Evaluation of fluralaner as an oral acaricide to reduce tick infestation in a wild rodent reservoir of Lyme disease. Parasit Vectors. 2020;13(1):73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stafford KC, Kitron U. Environmental management for Lyme borreliosis control. Lyme Borreliosis: Biology, Epidemiology and Control Wallingford. United Kingdom: CABI; 2002. p. 301–34.

    Book  Google Scholar 

  • Eisen L, Stafford KC. Barriers to effective tick management and tick-bite prevention in the United States (Acari: Ixodidae). J Med Entomol. 2021;58(4):1588–600.

    Article  PubMed  Google Scholar 

  • Vourc'h G, Abrial D, Bord S, Jacquot M, Masséglia S, Poux V, et al. Mapping human risk of infection with Borrelia burgdorferi sensu lato, the agent of Lyme borreliosis, in a periurban forest in France. Ticks Tick Borne Dis. 2016;7:644–52.

    Article  PubMed  Google Scholar 

  • Hassett E, Diuk-Wasser M, Harrington L, Fernandez P. Integrating tick density and park visitor behaviors to assess the risk of tick exposure in urban parks on Staten Island, New York. BMC Public Health. 2022Aug 23;22(1):1602.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouchard C, Beauchamp G, Nguon S, Trudel L, Milord F, Lindsay LR, et al. Associations between Ixodes scapularis ticks and small mammal hosts in a newly endemic zone in southeastern Canada: implications for Borrelia burgdorferi transmission. Ticks Tick-borne Diseases. 2011;2(4):183–90.

    Article  CAS  PubMed  Google Scholar 

  • Kurtenbach K, Hanincová K, Tsao JI, Margos G, Fish D, Ogden NH. Fundamental processes in the evolutionary ecology of Lyme borreliosis. Nat Rev Microbiol. 2006;4(9):660–9.

    Article  CAS  PubMed  Google Scholar 

  • Berger KA, Ginsberg HS, Gonzalez L, Mather TN. Relative humidity and activity patterns of Ixodes scapularis (Acari: Ixodidae). J Med Entomol. 2014;51(4):769–76.

    Article  CAS  PubMed  Google Scholar 

  • INSPQ, editor. Rapport de surveillance de la maladie de Lyme : année 2017. 2017. p. 12.

  • INSPQ. Résultats de surveillance de la maladie de Lyme : année 2018. INSPQ. 2018. Available from: https://www.inspq.qc.ca/zoonoses/lyme/surveillance/2018. Cited 2022 May 2.

  • Hayes EB, Piesman J. How can we prevent lyme disease? New England Journal of Medicine. 2003;348(24):2424–30.

    Article  PubMed  Google Scholar 

  • Meha C. Influence de la structure du paysage forestier sur l'exposition des populations humaines aux tiques. Le cas de la borréliose de Lyme en forêt de Sénart (Île-de-France) (Influence of forest landscape structures on human populations ' exposure to ticks. The case of Lyme borreliosis in Sénart forest). Bulletin de l'Association de Géographes Français. 2012;89(2):255–66.

  • Horobik V, Keesing F, Ostfeld RS. Abundance and Borrelia burgdorferi-infection prevalence of Nymphal Ixodes scapularis ticks along forest-field edges. EcoHealth. 2006;3(4):262–8.

    Article  Google Scholar 

  • Hubálek Z, Halouzka J, Juřicová Z. Longitudinal surveillance of the tick Ixodes Ricinus for borreliae. Med Vet Entomol. 2003;17(1):46–51.

    Article  PubMed  Google Scholar 

  • Adblock test (Why?)

    Comments

    Popular posts from this blog