Malaria therapeutics: are we close enough? - Parasites & Vectors - Parasites & Vectors

  • Roche B, Broutin H, Simard F. Optimizing public health strategies in low-income countries: the challenges to apply the scientific knowledge for disease control and for which diseases. Oxford: Oxford University Press; 2018.

    Google Scholar 

  • Animut A, Lindtjørn B. Use of epidemiological and entomological tools in the control and elimination of malaria in Ethiopia. Malar J. 2018;17:1–8.

    Article  Google Scholar 

  • Makanjuola RO, Taylor-Robinson AW. Improving accuracy of malaria diagnosis in underserved rural and remote endemic areas of Sub-Saharan Africa: a call to develop multiplexing rapid diagnostic tests. Scientifica. 2020;2020:3901409.

    Article  PubMed  PubMed Central  Google Scholar 

  • Soni R, Sharma D, Bhatt TK. Plasmodium falciparum secretome in erythrocyte and beyond. Front Microbiol. 2016;7:194.

    Article  PubMed  PubMed Central  Google Scholar 

  • Borgheti-Cardoso LN, Anselmo MS, Lantero E, Lancelot A, Serrano JL, Hernández-Ainsa S, et al. Promising nanomaterials in the fight against malaria. J Mater Chem B. 2020;8:9428–48.

    Article  Google Scholar 

  • Keleta Y, Ramelow J, Cui L, Li J. Molecular interactions between parasite and mosquito during midgut invasion as targets to block malaria transmission. NPJ Vaccines. 2021;6:140.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kalantari P. The emerging role of pattern recognition receptors in the pathogenesis of malaria. Vaccines. 2018;6:13.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mwakingwe-Omari A, Healy SA, Lane J, Cook DM, Kalhori S, Wyatt C, et al. Two chemoattenuated PfSPZ malaria vaccines induce sterile hepatic immunity. Nature. 2021;595:289–94.

    Article  CAS  PubMed  Google Scholar 

  • Alonso PL, Tanner M. Public health challenges and prospects for malaria control and elimination. Nat Med. 2013;19:150–5.

    Article  CAS  PubMed  Google Scholar 

  • Camponovo F, Ockenhouse CF, Lee C, Penny MA. Mass campaigns combining antimalarial drugs and anti-infective vaccines as seasonal interventions for malaria control, elimination and prevention of resurgence: a modelling study. BMC Infect Dis. 2019;19:1–15.

    Article  Google Scholar 

  • Draper SJ, Sack BK, King CR, Nielsen CM, Rayner JC, Higgins MK, et al. Malaria vaccines: recent advances and new horizons. Cell Host Microbe. 2018;24:43–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abay SM. Blocking malaria transmission to Anopheles mosquitoes using artemisinin derivatives and primaquine: a systematic review and meta-analysis. Parasit Vectors. 2013;6:278.

    Article  PubMed  PubMed Central  Google Scholar 

  • Talapko, Škrlec, Alebić, Jukić, Včev. Malaria: the past and the present. Microorganisms. 2019;7:179.

  • Rahman K, Khan SU, Fahad S, Chang MX, Abbas A, Khan WU, et al. Nano-biotechnology: a new approach to treat and prevent malaria. Int J Nanomedicine. 2019;14:1401–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alam A, Goyal M, Iqbal MS, Pal C, Dey S, Bindu S, et al. Novel antimalarial drug targets: hope for new antimalarial drugs. Expert Rev Clin Pharmacol. 2009;2:469–89.

    Article  CAS  PubMed  Google Scholar 

  • Yadav N, Sharma C, Awasthi SK. Diversification in the synthesis of antimalarial trioxane and tetraoxane analogs. RSC Adv. 2014;4:5469–98.

    Article  CAS  Google Scholar 

  • Chakraborti S, Chhibber-Goel J, Sharma A. Drug targeting of aminoacyl-tRNA synthetases in Anopheles species and Aedes aegypti that cause malaria and dengue. Parasit Vectors. 2021;14:1–11.

    Article  Google Scholar 

  • Tse EG, Korsik M, Todd MH. The past, present and future of anti-malarial medicines. Malar J. 2019;18:1–21.

    Article  Google Scholar 

  • White NJ. The treatment of malaria. N Engl J Med. 1996;335:800–6.

    Article  CAS  PubMed  Google Scholar 

  • Abamecha A, Yilma D, Adissu W, Yewhalaw D, Abdissa A. Efficacy and safety of artemether–lumefantrine for treatment of uncomplicated Plasmodium falciparum malaria in Ethiopia: a systematic review and meta-analysis. Malar J. 2021;20:213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eckstein-Ludwig U, Webb RJ, van Goethem IDA, East JM, Lee AG, Kimura M, et al. Artemisinins target the SERCA of Plasmodium falciparum. Nature. 2003;424:957–61.

    Article  CAS  PubMed  Google Scholar 

  • Nixon GL, Moss DM, Shone AE, Lalloo DG, Fisher N, O'Neill PM, et al. Antimalarial pharmacology and therapeutics of atovaquone. J Antimicrob Chemother. 2013;68:977–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coban C. The host targeting effect of chloroquine in malaria. Curr Opin Immunol. 2020;66:98–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obonyo CO, Juma EA. Clindamycin plus quinine for treating uncomplicated falciparum malaria: a systematic review and meta-analysis. Malar J. 2012;11:1–11.

    Article  Google Scholar 

  • Okada M, Guo P, Nalder S, Sigala PA. Doxycycline has distinct apicoplast-specific mechanisms of antimalarial activity. Life. 2020;9:e60246.

    CAS  Google Scholar 

  • Nothdurft HD, Clemens R, Bock HL, Löscher T. Halofantrine: a new substance for treatment of multidrug-resistant malaria. J Clin Investig. 1993;71:69–73.

    Article  CAS  Google Scholar 

  • Al-Bari MdAA. Chloroquine analogues in drug discovery: new directions of uses, mechanisms of actions and toxic manifestations from malaria to multifarious diseases. J Antimicrob Chemother. 2015;70:1608–21.

    Article  PubMed  Google Scholar 

  • Bassat Q. The use of artemether-lumefantrine for the treatment of uncomplicated Plasmodium vivax malaria. PLOS Negl Trop Dis. 2011;5:e1325.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wong W, Bai X-C, Sleebs BE, Triglia T, Brown A, Thompson JK, et al. Mefloquine targets the Plasmodium falciparum 80S ribosome to inhibit protein synthesis. Nat Microbiol. 2017;2:1–9.

    Article  Google Scholar 

  • Meissner PE, Mandi G, Coulibaly B, Witte S, Tapsoba T, Mansmann U, et al. Methylene blue for malaria in Africa: results from a dose-finding study in combination with chloroquine. Malar J. 2006;5:1–5.

    Article  Google Scholar 

  • Davis TME, Hung T-Y, Sim I-K, Karunajeewa HA, Ilett KF. Piperaquine A Resurgent Antimalarial Drug. Drugs. 2005;65:75–87.

    Article  CAS  PubMed  Google Scholar 

  • Baird JK, Hoffman SL. Primaquine therapy for malaria. Clin Infect Dis. 2004;39:1336–45.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava IK, Vaidya AB. A mechanism for the synergistic antimalarial action of atovaquone and proguanil. Antimicrob Agents Chemother. 1999;43:1334–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peters PJ, Thigpen MC, Parise ME, Newman RD. Safety and toxicity of sulfadoxine/pyrimethamine. Drug Saf. 2007;30:481–501.

    Article  CAS  PubMed  Google Scholar 

  • Bailly C. Pyronaridine: an update of its pharmacological activities and mechanisms of action. Biopolymers. 2021;112:e23398.

    Article  CAS  PubMed  Google Scholar 

  • van Dyke K, Lantz C, Szustkiewicz C. Quinacrine: mechanisms of antimalarial action. Science. 1970;169:492–3.

    Article  PubMed  Google Scholar 

  • Sanchez CP, Stein WD, Lanzer M. Dissecting the components of quinine accumulation in Plasmodium falciparum. Mol Microbiol. 2008;67:1081–93.

    Article  CAS  PubMed  Google Scholar 

  • Junghanss T, Lanzer M. Antiprotozoal Drugs Encyclopedia of Molecular Pharmacology. Berlin: Springer; 2008.

    Google Scholar 

  • Ebstie YA, Abay SM, Tadesse WT, A. Ejigu D. Tafenoquine and its potential in the treatment and relapse prevention of Plasmodium vivax malaria: the evidence to date. Drug Des Devel Ther. 2016;10:2387–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erhirhie EO. Antimalarial therapies and infertility: a comprehensive review. Toxicol Int. 2016;23:107–11.

    Article  Google Scholar 

  • Bhatt TK, Kapil C, Khan S, Jairajpuri MA, Sharma V, Santoni D, et al. A genomic glimpse of aminoacyl-tRNA synthetases in malaria parasite Plasmodium falciparum. BMC Genom. 2009;10:1–4.

    Article  Google Scholar 

  • Summers RL, Pasaje CFA, Pisco JP, Striepen J, Luth MR, Kumpornsin K, et al. Chemogenomics identifies acetyl-coenzyme A synthetase as a target for malaria treatment and prevention. Cell Chem Biol. 2022;29:191–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forte B, Ottilie S, Plater A, Campo B, Dechering KJ, Gamo FJ, et al. Prioritization of molecular targets for antimalarial drug discovery. ACS Infect Dis. 2021;7:2764–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manickam Y, Chaturvedi R, Babbar P, Malhotra N, Jain V, Sharma A. Drug targeting of one or more aminoacyl-tRNA synthetase in the malaria parasite Plasmodium falciparum. Drug Discov Today. 2018;23:1233–40.

    Article  CAS  PubMed  Google Scholar 

  • Wrenger C, Müller IB, Schifferdecker AJ, Jain R, Jordanova R, Groves MR. Specific inhibition of the aspartate aminotransferase of Plasmodium falciparum. J Mol Biol. 2011;405:956–71.

    Article  CAS  PubMed  Google Scholar 

  • Wang C, Krüger A, Du X, Wrenger C, Groves MR. Novel highlight in malarial drug discovery: aspartate transcarbamoylase. Front Cell Infect Microbiol. 2022;12:232.

    CAS  Google Scholar 

  • Lunev S, Batista FA, Bosch SS, Wrenger C, Groves MR. Identification and validation of novel drug targets for the treatment of Plasmodium falciparum malaria: new insights. Current Topics Malaria. 2016. https://doi.org/10.5772/65659.

    Article  Google Scholar 

  • Bansal A, Singh S, More KR, Hans D, Nangalia K, Yogavel M, et al. Characterization of Plasmodium falciparum calcium-dependent protein kinase 1 (PfCDPK1) and its role in microneme secretion during erythrocyte invasion. J Biol Chem. 2013;288:1590–602.

    Article  CAS  PubMed  Google Scholar 

  • Belen Cassera M, Zhang Y, Hazleton ZK, Schramm LV. Purine and pyrimidine pathways as targets in Plasmodium falciparum. Curr Top Med Chem. 2011;11:2103–15.

    Article  Google Scholar 

  • Krungkrai SR, Krungkrai J. Malaria parasite carbonic anhydrase: inhibition of aromatic/heterocyclic sulfonamides and its therapeutic potential. Asian Pac j trop med. 2011;1:233–42.

    Article  CAS  Google Scholar 

  • Graciotti M, Alam M, Solyakov L, Schmid R, Burley G, Bottrill AR, et al. Malaria protein kinase CK2 (PfCK2) shows novel mechanisms of regulation. PLoS ONE. 2014;9:e85391.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rotella D, Siekierka J, Bhanot P. Plasmodium falciparum cGMP-dependent protein kinase – A novel chemotherapeutic target. Front Microbiol. 2021;11:610408.

    Article  PubMed  PubMed Central  Google Scholar 

  • Choubey V, Maity P, Guha M, Kumar S, Srivastava K, Puri SK, et al. Inhibition of Plasmodium falciparum choline kinase by hexadecyltrimethylammonium bromide: a possible antimalarial mechanism. Antimicrob Agents Chemother. 2007;51:696–706.

    Article  CAS  PubMed  Google Scholar 

  • Guca E, Nagy GN, Hajdú F, Marton L, Izrael R, Hoh F, et al. Structural determinants of the catalytic mechanism of Plasmodium CCT, a key enzyme of malaria lipid biosynthesis. Sci Rep. 2018;8:11215.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rosenthal P, Sijwali P, Singh A, Shenai B. Cysteine proteases of malaria parasites: targets for chemotherapy. Curr Pharm Des. 2002;8:1659–72.

    Article  CAS  PubMed  Google Scholar 

  • Nixon GL, Pidathala C, Shone AE, Antoine T, Fisher N, O'Neill PM, et al. Targeting the mitochondrial electron transport chain of Plasmodium falciparum: new strategies towards the development of improved antimalarials for the elimination era. Future Med Chem. 2013;5:1573–91.

    Article  CAS  PubMed  Google Scholar 

  • Mishra R, Mishra B, Moorthy NH. Dihydrofolate reductase enzyme: a potent target for antimalarial research. Asian J Cell Biol. 2005;1:48–58.

    Article  Google Scholar 

  • Pornthanakasem W, Riangrungroj P, Chitnumsub P, Ittarat W, Kongkasuriyachai D, Uthaipibull C, et al. Role of Plasmodium vivax dihydropteroate synthase polymorphisms in sulfa drug resistance. Antimicrob Agents Chemother. 2016;60:4453–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka TQ, Deu E, Molina-Cruz A, Ashburne MJ, Ali O, Suri A, et al. Plasmodium dipeptidyl aminopeptidases as malaria transmission-blocking drug targets. Antimicrob Agents Chemother. 2013;57:4645–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koumpoura CL, Robert A, Athanassopoulos CM, Baltas M. Antimalarial inhibitors targeting epigenetics or mitochondria in Plasmodium falciparum: recent survey upon synthesis and biological evaluation of potential drugs against malaria. Molecules. 2021;26:5711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belete TM. Recent progress in the development of new antimalarial drugs with novel targets. Drug Des Devel Ther. 2020;14:3875–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marco M, Miguel CJ. Falcipain inhibition as a promising antimalarial target. Curr Top Med Chem. 2012;12:408–44.

    Article  CAS  PubMed  Google Scholar 

  • Sharma K. A Review on Plasmodium falciparum-protein farnesyltransferase inhibitors as antimalarial drug targets. Curr Drug Targets. 2017;18:1676–86.

    Article  CAS  PubMed  Google Scholar 

  • Lim S, Prieto JH. Glutathione reductase of Plasmodium falciparum as an antimalarial drug target of methylene blue. Biophys J. 2015;108:55a–6a.

    Article  Google Scholar 

  • Colón-Lorenzo EE, Colón-López DD, Vega-Rodríguez J, Dupin A, Fidock DA, Baerga-Ortiz A, et al. Structure-based screening of Plasmodium berghei glutathione S-transferase identifies CB-27 as a novel antiplasmodial compound. Front Pharmacol. 2020;11:246.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bruno S, Pinto A, Paredi G, Tamborini L, de Micheli C, la Pietra V, et al. Discovery of covalent inhibitors of glyceraldehyde-3-phosphate dehydrogenase, a target for the treatment of malaria. J Med Chem. 2014;57:7465–71.

    Article  CAS  PubMed  Google Scholar 

  • Alam A, Neyaz MK, Ikramul Hasan S. Exploiting unique structural and functional properties of malarial glycolytic enzymes for antimalarial drug development. Malar Res Treat. 2014;2014:451065.

    PubMed  PubMed Central  Google Scholar 

  • Kumar R, Musiyenko A, Barik S. The heat shock protein 90 of Plasmodium falciparum and antimalarial activity of its inhibitor, geldanamycin. Malar J. 2003;2:1–11.

    Article  Google Scholar 

  • Fong KY, Wright DW. Hemozoin and antimalarial drug discovery. Future Med Chem. 2013;5:1437–50.

    Article  CAS  PubMed  Google Scholar 

  • Joët T, Eckstein-Ludwig U, Morin C, Krishna S. Validation of the hexose transporter of Plasmodium falciparum as a novel drug target. Proc Natl Acad Sci. 2003;100:7476–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Patel V, Mazitschek R, Coleman B, Nguyen C, Urgaonkar S, Cortese J, et al. Identification and characterization of small molecule inhibitors of a class I histone deacetylase from Plasmodium falciparum. J Med Chem. 2009;52:2185–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miao J, Wang C, Lucky AB, Liang X, Min H, Adapa SR, et al. A unique GCN5 histone acetyltransferase complex controls erythrocyte invasion and virulence in the malaria parasite Plasmodium falciparum. PLoS Pathog. 2021;17:e1009351.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keough DT, Hocková D, Krečmerová M, Česnek M, Holý A, Naesens L, et al. Plasmodium vivax hypoxanthine-guanine phosphoribosyltransferase: a target for anti-malarial chemotherapy. Mol Biochem Parasitol. 2010;173:165–9.

    Article  CAS  PubMed  Google Scholar 

  • Penna-Coutinho J, Cortopassi WA, Oliveira AA, França TCC, Krettli AU. Antimalarial activity of potential inhibitors of Plasmodium falciparum lactate dehydrogenase enzyme selected by docking studies. PLoS ONE. 2011;6:e21237.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reyes Romero A, Lunev S, Popowicz GM, Calderone V, Gentili M, Sattler M, et al. A fragment-based approach identifies an allosteric pocket that impacts malate dehydrogenase activity. Commun Biol. 2021;4:949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartuti ED, Inaoka DK, Komatsuya K, Miyazaki Y, Miller RJ, Xinying W, et al. Biochemical studies of membrane bound Plasmodium falciparum mitochondrial L-malate:quinone oxidoreductase, a potential drug target. Biochim Biophys Acta Bioenerg. 2018;1859:191–200.

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Chong CR, Shi L, Yoshimoto T, Sullivan DJ, Liu JO. Inhibitors of Plasmodium falciparum methionine aminopeptidase 1b possess antimalarial activity. Proc Natl Acad Sci. 2006;103:14548–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorin-Semblat D, Quashie N, Halbert J, Sicard A, Doerig C, Peat E, et al. Functional characterization of both MAP kinases of the human malaria parasite Plasmodium falciparum by reverse genetics. Mol Microbiol. 2007;65:1170–80.

    Article  CAS  PubMed  Google Scholar 

  • Schlott AC, Holder AA, Tate EW. N -myristoylation as a drug target in malaria: exploring the role of N -myristoyltransferase substrates in the inhibitor mode of action. ACS Infect Dis. 2018;4:449–57.

    Article  CAS  PubMed  Google Scholar 

  • Ke H, Ganesan SM, Dass S, Morrisey JM, Pou S, Nilsen A, et al. Mitochondrial type II NADH dehydrogenase of Plasmodium falciparum (PfNDH2) is dispensable in the asexual blood stages. PLoS ONE. 2019;14:e0214023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Istvan ES, Das S, Bhatnagar S, Beck JR, Owen E, Llinas M, et al. Plasmodium Niemann-Pick type C1-related protein is a druggable target required for parasite membrane homeostasis. eLife. 2019;8:e40529.

    Article  PubMed  PubMed Central  Google Scholar 

  • Henry MX. A double line of defense: heat shock proteins and polyamines act as contributing factors to drug resistance of some Plasmodium parasites. In: Tyagi RK, editor. Plasmodium species and drug resistance. London: IntechOpen; 2021.

    Google Scholar 

  • Kumar S, Krishnamoorthy K, Mudeppa DG, Rathod PK. Structure of Plasmodium falciparum orotate phosphoribosyltransferase with autologous inhibitory protein–protein interactions. Acta Crystallogr F Struct Biol Commun. 2015;71:600–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krungkrai SR, DelFraino BJ, Smiley JA, Prapunwattana P, Mitamura T, Horii T, et al. A novel enzyme complex of orotate phosphoribosyltransferase and orotidine 5'-monophosphate decarboxylase in human malaria parasite Plasmodium falciparum: physical association, kinetics, and inhibition characterization. Biochemistry. 2005;44:1643–52.

    Article  CAS  PubMed  Google Scholar 

  • Koyama FC, Ribeiro RY, Garcia JL, Azevedo MF, Chakrabarti D, Garcia CRS. Ubiquitin proteasome system and the atypical kinase PfPK7 are involved in melatonin signaling in Plasmodium falciparum. J Pineal Res. 2012;53:147–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pett HE, Jansen PA, Hermkens PH, Botman PN, Beuckens-Schortinghuis CA, Blaauw RH, et al. Novel pantothenate derivatives for anti-malarial chemotherapy. Malar J. 2015;14:1–8.

    Article  CAS  Google Scholar 

  • Flueck C, Drought LG, Jones A, Patel A, Perrin AJ, Walker EM, et al. Phosphodiesterase beta is the master regulator of cAMP signaling during malaria parasite invasion. PLoS Biol. 2019;17:3000154.

    Article  Google Scholar 

  • Arendse LB, Wyllie S, Chibale K, Gilbert IH. Plasmodium kinases as potential drug targets for malaria: challenges and opportunities. ACS Infect Dis. 2021;7:518–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tawk L, Chicanne G, Dubremetz J-F, Richard V, Payrastre B, Vial HJ, et al. Phosphatidylinositol 3-phosphate, an essential lipid in Plasmodium, localizes to the food vacuole membrane and the apicoplast. Eukaryot Cell. 2010;9:1519–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raman J, Ashok CS, Subbayya IN, Anand RP, Senthamizh T, Selvi S, et al. Plasmodium falciparum hypoxanthine guanine phosphoribosyltransferase. FEBS J. 2005;272:1900–11.

    Article  CAS  PubMed  Google Scholar 

  • Liu P. Plasmepsin: function, characterization and targeted antimalarial drug development. Nat Remed Fight Against Parasites. 2017. https://doi.org/10.5772/66716.

    Article  Google Scholar 

  • Egwu CO, Augereau J-M, Reybier K, Benoit-Vical F. Reactive oxygen species as the brainbox in malaria treatment. Antioxidants. 2021;10:1872.

    Article  CAS  PubMed  PubMed Central  Google Scholar