A reverse vaccinology approach on transmembrane carbonic anhydrases from Plasmodium species as vaccine candidates for malaria prevention - Malaria Journal - Malaria Journal

  • Soulard V, Bosson-Vanga H, Lorthiois A, Roucher C, Franetich JF, Zanghi G, et al. Plasmodium falciparum full life cycle and Plasmodium ovale liver stages in humanized mice. Nat Commun. 2015;6:7690.

    CAS  PubMed  Article  Google Scholar 

  • Talapko J, Skrlec I, Alebic T, Jukic M, Vcev A. Malaria: the past and the present. Microorganisms. 2019;7:179.

    CAS  PubMed Central  Article  Google Scholar 

  • Ren M. Greater political commitment needed to eliminate malaria. Infect Dis Poverty. 2019;8:28.

    PubMed  PubMed Central  Article  Google Scholar 

  • Hoffman SL, Vekemans J, Richie TL, Duffy PE. The march toward malaria vaccines. Vaccine. 2015;33(Suppl 4):D13-23.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Garrido-Cardenas JA, Manzano-Agugliaro F, Gonzalez-Ceron L, Gil-Montoya F, Alcayde-Garcia A, Novas N, et al. The identification of scientific communities and their approach to worldwide malaria research. Int J Environ Res Public Health. 2018;15:2703.

    PubMed Central  Article  Google Scholar 

  • Akpan GE, Adepoju KA, Oladosu OR. Potential distribution of dominant malaria vector species in tropical region under climate change scenarios. PLoS ONE. 2019;14: e0218523.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Lopez C, Yepes-Perez Y, Hincapie-Escobar N, Diaz-Arevalo D, Patarroyo MA. What Is known about the immune response induced by Plasmodium vivax malaria vaccine candidates? Front Immunol. 2017;8:126.

    PubMed  PubMed Central  Google Scholar 

  • Dobano C, Berthoud T, Manaca MN, Nhabomba A, Guinovart C, Aguilar R, et al. High production of pro-inflammatory cytokines by maternal blood mononuclear cells is associated with reduced maternal malaria but increased cord blood infection. Malar J. 2018;17:177.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Dunst J, Kamena F, Matuschewski K. Cytokines and chemokines in cerebral malaria pathogenesis. Front Cell Infect Microbiol. 2017;7:324.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Carpio VH, Opata MM, Montanez ME, Banerjee PP, Dent AL, Stephens R. IFN-gamma and IL-21 double producing T cells are Bcl6-independent and survive into the memory phase in Plasmodium chabaudi infection. PLoS ONE. 2015;10: e0144654.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Burrack KS, Huggins MA, Taras E, Dougherty P, Henzler CM, Yang R, et al. Interleukin-15 complex treatment protects mice from cerebral malaria by inducing interleukin-10-producing natural killer cells. Immunity. 2018;48(760–72): e4.

    Google Scholar 

  • Lundie RJ, de Koning-Ward TF, Davey GM, Nie CQ, Hansen DS, Lau LS, et al. Blood-stage Plasmodium infection induces CD8+ T lymphocytes to parasite-expressed antigens, largely regulated by CD8alpha+ dendritic cells. Proc Natl Acad Sci USA. 2008;105:14509–14.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Crispe IN. APC licensing and CD4+T cell help in liver-stage malaria. Front Microbiol. 2014;5:617.

    PubMed  PubMed Central  Article  Google Scholar 

  • Riccio EK, Totino PR, Pratt-Riccio LR, Ennes-Vidal V, Soares IS, Rodrigues MM, et al. Cellular and humoral immune responses against the Plasmodium vivax MSP-1(1)(9) malaria vaccine candidate in individuals living in an endemic area in north-eastern Amazon region of Brazil. Malar J. 2013;12:326.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Kumsiri R, Troye-Blomberg M, Pattanapanyasat K, Krudsood S, Maneerat Y. IgE low affinity receptor (CD23) expression, Plasmodium falciparum specific IgE and tumor necrosis factor-alpha production in Thai uncomplicated and severe falciparum malaria patients. Acta Trop. 2016;154:25–33.

    CAS  PubMed  Article  Google Scholar 

  • Bijker EM, Borrmann S, Kappe SH, Mordmuller B, Sack BK, Khan SM. Novel approaches to whole sporozoite vaccination against malaria. Vaccine. 2015;33:7462–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Itsara LS, Zhou Y, Do J, Grieser AM, Vaughan AM, Ghosh AK. The development of whole sporozoite vaccines for Plasmodium falciparum malaria. Front Immunol. 2018;9:2748.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Mo AX, Pesce J, Hall BF. Exploring immunological mechanisms of the whole sporozoite vaccination against P. falciparum malaria. Vaccine. 2015;3:2851–7.

    Article  CAS  Google Scholar 

  • Zenklusen I, Jongo S, Abdulla S, Ramadhani K, Lee Sim BK, Cardamone H, et al. Immunization of malaria-preexposed volunteers with PfSPZ vaccine elicits long-lived IgM invasion-inhibitory and complement-fixing antibodies. J Infect Dis. 2018;217:1569–78.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Mordmuller B, Surat G, Lagler H, Chakravarty S, Ishizuka AS, Lalremruata A, et al. Sterile protection against human malaria by chemoattenuated PfSPZ vaccine. Nature. 2017;542:445–9.

    PubMed  Article  CAS  Google Scholar 

  • Lyke KE, Ishizuka AS, Berry AA, Chakravarty S, DeZure A, Enama ME, et al. Attenuated PfSPZ Vaccine induces strain-transcending T cells and durable protection against heterologous controlled human malaria infection. Proc Natl Acad Sci USA. 2017;114:2711–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Mendes AM, Machado M, Goncalves-Rosa N, Reuling IJ, Foquet L, Marques C, et al. A Plasmodium berghei sporozoite-based vaccination platform against human malaria. NPJ Vaccines. 2018;3:33.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Jobe O, Donofrio G, Sun G, Liepinsh D, Schwenk R, Krzych U. Immunization with radiation-attenuated Plasmodium berghei sporozoites induces liver cCD8alpha+DC that activate CD8+T cells against liver-stage malaria. PLoS ONE. 2009;4: e5075.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Raja AI, Stanisic DI, Good MF. Chemical attenuation in the development of a whole-organism malaria vaccine. Infect Immun. 2017;85:e00062-e117.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Cowan GJ, Bockau U, Eleni-Muus J, Aldag I, Samuel K, Creasey AM, et al. A novel malaria vaccine candidate antigen expressed in Tetrahymena thermophila. PLoS ONE. 2014;9: e87198.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • De Silva JR, Lau YL, Fong MY. Expression and evaluation of recombinant Plasmodium knowlesi merozoite surface protein-3 (MSP-3) for detection of human malaria. PLoS ONE. 2016;1: e0158998.

    Article  CAS  Google Scholar 

  • Kamuyu G, Tuju J, Kimathi R, Mwai K, Mburu J, Kibinge N, et al. KILchip v1.0: a novel Plasmodium falciparum merozoite protein microarray to facilitate malaria vaccine candidate prioritization. Front Immunol. 2018;9:2866.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Sonaimuthu P, Cheong FW, Chin LC, Mahmud R, Fong MY, Lau YL. Detection of human malaria using recombinant Plasmodium knowlesi merozoire surface protein-1 (MSP-1(1)(9)) expressed in Escherichia coli. Exp Parasitol. 2015;153:118–22.

    CAS  PubMed  Article  Google Scholar 

  • Cheong FW, Lau YL, Fong MY, Mahmud R. Evaluation of recombinant Plasmodium knowlesi merozoite surface protein-1(33) for detection of human malaria. Am J Trop Med Hyg. 2013;88:835–40.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Lau YL, Cheong FW, Chin LC, Mahmud R, Chen Y, Fong MY. Evaluation of codon optimized recombinant Plasmodium knowlesi merozoite surface protein-119 (pkMSP-119) expressed in Pichia pastoris. Trop Biomed. 2014;31:749–59.

    CAS  PubMed  Google Scholar 

  • Bianchin A, Bell A, Chubb AJ, Doolan N, Leneghan D, Stavropoulos I, et al. Design and evaluation of antimalarial peptides derived from prediction of short linear motifs in proteins related to erythrocyte invasion. PLoS ONE. 2015;10: e0127383.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Doll TA, Neef T, Duong N, Lanar DE, Ringler P, Muller SA, et al. Optimizing the design of protein nanoparticles as carriers for vaccine applications. Nanomedicine. 2015;11:1705–13.

    CAS  PubMed  Article  Google Scholar 

  • Draper SJ, Angov E, Horii T, Miller LH, Srinivasan P, Theisen M, et al. Recent advances in recombinant protein-based malaria vaccines. Vaccine. 2015;33:7433–43.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Fonseca JA, Cabrera-Mora M, Singh B, Oliveira-Ferreira J, da Costa L-J, Calvo-Calle JM, et al. A chimeric protein-based malaria vaccine candidate induces robust T cell responses against Plasmodium vivax MSP119. Sci Rep. 2016;6:34527.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Kalra A, Mukherjee P, Chauhan VS. Characterization of fine specificity of the immune response to a Plasmodium falciparum rhoptry neck protein, PfAARP. Malar J. 2016;15:457.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Lozano JM, Varela Y, Silva Y, Ardila K, Forero M, Guasca L, et al. A large size chimeric highly immunogenic peptide presents multistage Plasmodium antigens as a vaccine candidate system against malaria. Molecules. 2017;22:1837.

    PubMed Central  Article  CAS  Google Scholar 

  • Dhiman S. Are malaria elimination efforts on right track? An analysis of gains achieved and challenges ahead. Infect Dis Poverty. 2019;8:14.

    PubMed  PubMed Central  Article  Google Scholar 

  • Barry AE, Arnott A. Strategies for designing and monitoring malaria vaccines targeting diverse antigens. Front Immunol. 2014;5:359.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Morrison C. Landmark green light for Mosquirix malaria vaccine. Nat Biotechnol. 2015;33:1015–6.

    CAS  PubMed  Article  Google Scholar 

  • Gosling R, von Seidlein L. The future of the RTS, S/AS01 malaria vaccine: an alternative development plan. PLoS Med. 2016;13: e1001994.

    PubMed  PubMed Central  Article  Google Scholar 

  • Rts SCTP. Efficacy and safety of RTS, S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. Lancet. 2015;386:31–45.

    Article  CAS  Google Scholar 

  • Del Prete S, Vullo D, Fisher GM, Andrews KT, Poulsen SA, Capasso C, et al. Discovery of a new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum–the eta-carbonic anhydrases. Bioorg Med Chem Lett. 2014;24:4389–96.

    PubMed  Article  CAS  Google Scholar 

  • Zolfaghari Emameh R, Barker H, Tolvanen ME, Ortutay C, Parkkila S. Bioinformatic analysis of beta carbonic anhydrase sequences from protozoans and metazoans. Parasit Vectors. 2014;7:38.

    PubMed  PubMed Central  Article  Google Scholar 

  • Kikutani S, Nakajima K, Nagasato C, Tsuji Y, Miyatake A, Matsuda Y. Thylakoid luminal theta-carbonic anhydrase critical for growth and photosynthesis in the marine diatom Phaeodactylum tricornutum. Proc Natl Acad Sci USA. 2016;113:9828–33.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Jensen EL, Clement R, Kosta A, Maberly SC, Gontero B. A new widespread subclass of carbonic anhydrase in marine phytoplankton. ISME J. 2019;13:2094–106.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Zolfaghari Emameh R, Kuuslahti M, Nosrati H, Lohi H, Parkkila S. Assessment of databases to determine the validity of beta- and gamma-carbonic anhydrase sequences from vertebrates. BMC Genomics. 2020;21:352.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Lane TW, Saito MA, George GN, Pickering IJ, Prince RC, Morel FM. Biochemistry: a cadmium enzyme from a marine diatom. Nature. 2005;435:42.

    CAS  PubMed  Article  Google Scholar 

  • Xu Y, Feng L, Jeffrey PD, Shi Y, Morel FM. Structure and metal exchange in the cadmium carbonic anhydrase of marine diatoms. Nature. 2008;452:56–61.

    CAS  PubMed  Article  Google Scholar 

  • Ferry JG. The gamma class of carbonic anhydrases. Biochim Biophys Acta. 2010;1804:374–81.

    CAS  PubMed  Article  Google Scholar 

  • Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov. 2008;7:168–81.

    CAS  PubMed  Article  Google Scholar 

  • Rowlett RS. Structure and catalytic mechanism of the beta-carbonic anhydrases. Biochim Biophys Acta. 2010;1804:362–73.

    CAS  PubMed  Article  Google Scholar 

  • Zolfaghari Emameh R, Kuuslahti M, Nareaho A, Sukura A, Parkkila S. Innovative molecular diagnosis of Trichinella species based on beta-carbonic anhydrase genomic sequence. Microb Biotechnol. 2016;9:172–9.

    CAS  PubMed  Article  Google Scholar 

  • Zolfaghari Emameh R, Hosseini SN, Parkkila S. Application of beta and gamma carbonic anhydrase sequences as tools for identification of bacterial contamination in the whole genome sequence of inbred Wuzhishan minipig (Sus scrofa) annotated in databases. Database (Oxford). 2021;18(2021):baab029.

    Article  CAS  Google Scholar 

  • Linser PJ, Smith KE, Seron TJ, Neira OM. Carbonic anhydrases and anion transport in mosquito midgut pH regulation. J Exp Biol. 2009;212(Pt 11):1662–71.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Zolfaghari Emameh R, Kuuslahti M, Vullo D, Barker HR, Supuran CT, Parkkila S. Ascaris lumbricoides beta carbonic anhydrase: a potential target enzyme for treatment of ascariasis. Parasit Vectors. 2015;8:479.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Syrjanen L, Tolvanen M, Hilvo M, Olatubosun A, Innocenti A, Scozzafava A, et al. Characterization of the first beta-class carbonic anhydrase from an arthropod (Drosophila melanogaster) and phylogenetic analysis of beta-class carbonic anhydrases in invertebrates. BMC Biochem. 2010;11:28.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Zolfaghari Emameh R, Barker H, Hytonen VP, Tolvanen ME, Parkkila S. Beta carbonic anhydrases: novel targets for pesticides and anti-parasitic agents in agriculture and livestock husbandry. Parasit Vectors. 2014;7:403.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Zolfaghari Emameh R, Syrjanen L, Barker H, Supuran CT, Parkkila S. Drosophila melanogaster: a model organism for controlling Dipteran vectors and pests. J Enzyme Inhib Med Chem. 2015;30(3):505–13.

    CAS  PubMed  Article  Google Scholar 

  • Zolfaghari Emameh R, Barker HR, Syrjanen L, Urbanski L, Supuran CT, Parkkila S. Identification and inhibition of carbonic anhydrases from nematodes. J Enzyme Inhib Med Chem. 2016;31(sup4):176–84.

    CAS  PubMed  Article  Google Scholar 

  • Zolfaghari Emameh R, Falak R, Bahreini E. Application of system biology to explore the association of neprilysin, angiotensin-converting enzyme 2 (ACE2), and carbonic anhydrase (CA) in pathogenesis of SARS-CoV-2. Biol Proced Online. 2020;22:11.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Krungkrai SR, Krungkrai J. Insights into the pyrimidine biosynthetic pathway of human malaria parasite Plasmodium falciparum as chemotherapeutic target. Asian Pac J Trop Med. 2016;9:525–34.

    CAS  PubMed  Article  Google Scholar 

  • UniProt C. The universal protein resource (UniProt) in 2010. Nucleic Acids Res. 2010;38(Database issue):D142-8.

    Google Scholar 

  • Hung JH, Weng Z. Sequence alignment and homology search with BLAST and ClustalW. Cold Spring Harb Protoc. 2016;2016:pdb prot093088.

    Article  Google Scholar 

  • Sievers F, Higgins DG. Clustal omega. Curr Protoc Bioinformatics. 2014;48(3):1–3.

    Google Scholar 

  • Rose PW, Prlic A, Bi C, Bluhm WF, Christie CH, Dutta S, et al. The RCSB Protein Data Bank: views of structural biology for basic and applied research and education. Nucleic Acids Res. 2015;43(Database issue):D345-56.

    CAS  PubMed  Article  Google Scholar 

  • Gabanyi MJ, Adams PD, Arnold K, Bordoli L, Carter LG, Flippen-Andersen J, et al. The structural biology knowledgebase: a portal to protein structures, sequences, functions, and methods. J Struct Funct Genomics. 2011;12:45–54.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol. 2001;305:567–80.

    CAS  PubMed  Article  Google Scholar 

  • Hoof I, Peters B, Sidney J, Pedersen LE, Sette A, Lund O, et al. NetMHCpan, a method for MHC class I binding prediction beyond humans. Immunogenetics. 2009;61:1–13.

    CAS  PubMed  Article  Google Scholar 

  • Nielsen M, Lundegaard C, Blicher T, Lamberth K, Harndahl M, Justesen S, et al. NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence. PLoS ONE. 2007;2: e796.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Jorgensen KW, Rasmussen M, Buus S, Nielsen M. NetMHCstab - predicting stability of peptide-MHC-I complexes; impacts for cytotoxic T lymphocyte epitope discovery. Immunology. 2014;141:18–26.

    CAS  PubMed  Article  Google Scholar 

  • Andreatta M, Karosiene E, Rasmussen M, Stryhn A, Buus S, Nielsen M. Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification. Immunogenetics. 2015;67:641–50.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Kolaskar AS, Tongaonkar PC. A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett. 1990;276:172–4.

    CAS  PubMed  Article  Google Scholar 

  • Vita R, Overton JA, Greenbaum JA, Ponomarenko J, Clark JD, Cantrell JR, et al. The immune epitope database (IEDB) 3.0. Nucleic Acids Res. 2015;43(1):D405-12.

    CAS  PubMed  Article  Google Scholar 

  • Kloetzel PM. The proteasome and MHC class I antigen processing. Biochim Biophys Acta. 2004;1695:225–33.

    CAS  PubMed  Article  Google Scholar 

  • Goodsell DS, Dutta S, Zardecki C, Voigt M, Berman HM, Burley SK. The RCSB PDB "molecule of the month": inspiring a molecular view of biology. PLoS Biol. 2015;13: e1002140.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Rigsby RE, Parker AB. Using the PyMOL application to reinforce visual understanding of protein structure. Biochem Mol Biol Educ. 2016;44:433–7.

    CAS  PubMed  Article  Google Scholar 

  • Humphrey W, Dalke A, Schulten K. VMD: visual molecular dynamics. J Mol Graph. 1996;14(33–8):27–8.

    Google Scholar 

  • Montesanto G. A fast GNU method to draw accurate scientific illustrations for taxonomy. Zookeys. 2015;515:191–206.

    Article  Google Scholar 

  • Ivanciuc O, Schein CH, Braun W. SDAP: database and computational tools for allergenic proteins. Nucleic Acids Res. 2003;31:359–62.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Ivanciuc O, Gendel SM, Power TD, Schein CH, Braun W. AllerML: markup language for allergens. Regul Toxicol Pharmacol. 2011;60:151–60.

    PubMed  PubMed Central  Article  Google Scholar 

  • Aalberse RC. Structural biology of allergens. J Allergy Clin Immunol. 2000;106:228–38.

    CAS  PubMed  Article  Google Scholar 

  • Ceroni A, Passerini A, Vullo A, Frasconi P. DISULFIND: a disulfide bonding state and cysteine connectivity prediction server. Nucleic Acids Res. 2006;34(Web Server issue):W177-81.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Qin M, Wang W, Thirumalai D. Protein folding guides disulfide bond formation. Proc Natl Acad Sci USA. 2015;112:11241–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Liu T, Wang Y, Luo X, Li J, Reed SA, Xiao H, et al. Enhancing protein stability with extended disulfide bonds. Proc Natl Acad Sci USA. 2016;113:5910–5.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Jespersen MC, Peters B, Nielsen M, Marcatili P. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res. 2017;45(W1):W24–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Tan QW, Mutwil M. Malaria.tools-comparative genomic and transcriptomic database for Plasmodium species. Nucleic Acids Res. 2020;48(D1):D768–75.

    CAS  PubMed  Article  Google Scholar 

  • Boone CD, Habibzadegan A, Tu C, Silverman DN, McKenna R. Structural and catalytic characterization of a thermally stable and acid-stable variant of human carbonic anhydrase II containing an engineered disulfide bond. Acta Crystallogr D Biol Crystallogr. 2013;69(Pt 8):1414–22.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Chapiro J, Claverol S, Piette F, Ma W, Stroobant V, Guillaume B, et al. Destructive cleavage of antigenic peptides either by the immunoproteasome or by the standard proteasome results in differential antigen presentation. J Immunol. 2006;176:1053–61.

    CAS  PubMed  Article  Google Scholar 

  • Makobongo MO, Riding G, Xu H, Hirunpetcharat C, Keough D, de Jersey J, et al. The purine salvage enzyme hypoxanthine guanine xanthine phosphoribosyl transferase is a major target antigen for cell-mediated immunity to malaria. Proc Natl Acad Sci USA. 2003;100:2628–33.

    CAS  PubMed  PubMed Central  Article  Google Scholar